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Abstract

We study the matching of patent applications to examiners at the

U.S. Patent and Trademark Office. The distribution of technology

classes is more concentrated than would occur under random matching

and F-tests reject the hypothesis that family size and claim scope are

randomly distributed across examiners. Using the application text, we

show that examiner specialization persists even after conditioning on

technology sub-classes. Specialization is less pronounced in computers

and software than other technology fields. More specialized examin-

ers have a lower grant rate. These findings undermine the idea that

random matching justifies instrumental variables based on examiner

behaviors or characteristics.
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1 Introduction

In 2015, the U.S. Patent and Trademark Office (USPTO) received 589,410

utility patent applications. Matching each application to a qualified examiner

is a fundamental part of the examination process. This matching proceeds in

two steps. First, each application is assigned to an “art unit” comprised of

several examiners who specialize in a particular technology. Then the appli-

cation is assigned to an individual examiner within that art unit. Motivated

by the accounts in Cockburn, Kortum & Stern (2002) and Lemley & Sampat

(2012), several studies have suggested that the second step in this process is

more-or-less random, and then, building on an idea proposed by Sampat &

Williams (2017), used examiner characteristics as instrumental variables for

examination outcomes.1

We re-examine the random matching assumption, and find strong evi-

dence of technological specialization by patent examiners within art units.

Our statistical tests also reject the hypothesis that proxies for patent quality

(family size), scope (the length of the first claim), and the identity of the ap-

plicant (assignee) are randomly distributed across examiners. Examiner spe-

cialization is more pronounced in the art units that examine Biotechnology,

Chemistry, Mechanical Engineering and Semiconductor applications, and less

so in the computer-related art units. Using a measure of textual similarity

between pairs of patent applications, we show that examiner specialization

persists even within U.S. Patent Classification System (USPC) subclasses.

Finally, we find that more specialized examiners have a lower grant rate and

produce a larger narrowing of claim-scope during the examination process.

These findings have implications for instrumental variable strategies based

on examiner behaviors and characteristics. Random assignment would suf-

fice to make leave-one-out grant rates (or any other examiner characteristic)

uncorrelated with both observed and unobserved characteristics of an ap-

plication. But when examiners specialize, examiner-based instruments may

be correlated with unobserved variation in the underlying technology, sug-

1Papers adopting variants on this identification strategy include Farre-Mensa, Hegde &
Ljungqvist (2017), Feng & Jaravel (2017), Gaulé (2015), Kuhn (2016), Kuhn & Thompson
(2017), and Sampat & Williams (2017).
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gesting an alternative path through which the instrument could influence

outcomes. Thus, although examiner-based instruments may be valid in some

applications, the identification strategy rests on a stronger assumption than

is typically acknowledged: potential outcomes must be uncorrelated with

(unobserved) technological heterogeneity. Although we do not generally take

a Manichean view of causal inference, we are forced to conclude that in

this case, random matching of examiners to applications does not provide a

general-purpose tool for causal inference about the patent system.

This is the first paper to systematically test the random matching hy-

pothesis across all of the technology areas examined by the USPTO. We use

three different approaches to provide evidence of specialization. First, we ex-

amine a pair of test statistics from the literature on industry agglomeration

(Mori, Nishikimi & Smith 2005) that ask whether application characteristics

(e.g. technology subclass) are more or less dispersed across examiners than

would occur under random assignment.2 These statistics are computed at

the art-unit-filing-year level, and we examine the entire distribution of p-

values for various application characteristics, including technology subclass,

assignee, and indicators of patent value (family size) and scope (first inde-

pendent claim length). Second, we use simple F-tests to examine whether

examiner fixed-effects are correlated with our measures of patent value and

scope. Our third approach exploits a new measure proposed by Arts, Cassi-

man & Gomez (2018), and uses OLS regression to show that the probability

of two applications being assigned to the same examiner increases with the

textual similarity of their titles and abstracts.

At a substantive level, our findings illustrate how the USPTO manages a

tension between efficiency and fairness (Merges 1999). One way to promote

fairness is through uniform application of patentability criteria, but prior

research suggests that is difficult. Some examiners are simply tougher than

others (Sampat & Williams 2017, Kuhn & Thompson 2017), and experienced

examiners are more lenient on average, partly because of time constraints

2These methods focus specifically on the null hypothesis of random assignment, unlike
instrumental variable falsification tests that ask the slightly different question of whether
examiner and application characteristics are correlated.
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(Lemley & Sampat 2012, Frakes & Wasserman 2017). Random matching

provides another path to fairness, but forgoes the potential efficiency bene-

fits of specialization. Our analysis shows that the amount of specialization

varies across art units, leading some applicants to get tougher examiners

on average. Although the important applications (with large families) and

broad applications (with short first independent claims) are not randomly dis-

tributed, technological specialization explains most of this correlation. There

is no evidence that the broadest or most important applications are assigned

to specific examiners.

We consider two possible mechanisms that would generate more observed

specialization in Chemistry, Biotechnology, Mechanical Engineering and Semi-

conductors than in the computer-related art units. One possibility is that

“generalist examiners” are able to evaluate computing inventions, while more

specialized skills and knowledge are required in other areas. Another possi-

bility is that the USPC technology classification system works better outside

computers and software, so we simply fail to observe much of the specializa-

tion that takes place within computer-related art units. The data provide

support for both of these explanations. Application-pairs sharing the same

examiner have less textual overlap in Computers and Communications, sug-

gesting that examiners in the computer-related tech centers are more general-

ist. At the same time, application-pairs in Computers and Communications

that share the same primary USPC subclass are less textually similar than in

other fields, suggesting differences in the quality of the classification system.

Finally, we find a positive correlation between specialization and a more

stringent examination process, suggesting that it is easier for examiners who

specialize to find relevant prior art. Under random matching, these esti-

mates have a causal interpretation. Alternatively, they remain important for

showing how non-random matching is related to examination outcomes.

2 Patent Examiner Assignment at the USPTO

When a patent application is filed, the Office of Patent Application Pro-

cessing reviews the formality requirements of the application and assigns it
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a serial number. A contractor then defines its technology classification by

extracting keywords form the text of the application and comparing them

to a set of keywords associated with USPC class and subclass codes.3 Each

application has at least one mandatory classification, which is defined as a

unique combination of class and subclass identifiers. The current version of

the USPC has roughly 450 classes and more than 150,000 subclasses.

The USPTO has eight Technology Centers (TCs) responsible for exami-

nation of utility patent applications in broad technological areas. Each TC

is comprised of several art units, or teams of patent examiners who specialize

in a particular technology. Technological classifications are used to assign

each new patent application to a specific art unit.4 Within each art unit the

initial assignment of a new application is handled by a Supervisory Patent

Examiner (SPE). The SPE can refine the technological classification of a new

application if it is incorrect, or request that an application be transferred to

another art unit. But in most cases, the SPE will assign the application to

an examiner within her art unit.

Previous research documents that SPEs have substantial discretion in

examiner assignment. Some SPEs interviewed by Lemley & Sampat (2012)

mention assigning applications to examiners essentially randomly within sub-

classes. Other SPEs give the oldest unassigned application to an examiner

when she finishes the examination of another application. Although these

practices suggest random matching, some SPEs may encourage technologi-

cal specialization of examiners within their art unit. Cockburn et al. (2002)

suggest that the degree of technological specialization varies across art units

– in some art units an individual examiner is responsible for almost all ap-

plications in a specific technology class, and in others the examiners are

less specialized. In addition, our conversation with SPEs and examiners con-

firmed that skills and knowledge of a technical area are often among the main

3For details, see http://www.uspto.gov/sites/default/files/patents/

resources/classification/overview.pdf. Although it was replaced by the Co-
operative Patent Classification (CPC) on January 1, 2013, the USPC is the relevant
classification for the entire period of our study.

4For the current list of classes and subclasses examined by each art unit,
see http://www.uspto.gov/patents-application-process/patent-search/

understanding-patent-classifications/patent-classification.

4

http://www.uspto.gov/sites/default/files/patents/resources/classification/overview.pdf
http://www.uspto.gov/sites/default/files/patents/resources/classification/overview.pdf
http://www.uspto.gov/patents-application-process/patent-search/understanding-patent-classifications/patent-classification
http://www.uspto.gov/patents-application-process/patent-search/understanding-patent-classifications/patent-classification


criteria that drive application assignment, along with fairness to applicants,

examiners’ workload and learning objectives.

Although the USPTO constantly monitors the performance of art units

and examiners to ensure a certain level of quality of the examination process,

the assignment to a particular art unit and to a specific examiner can have

important consequences for an application. Different practices across art

units and the personal approach of each examiner can affect whether an

application is eventually granted (Sampat & Williams 2017), how quickly a

decision is reached (Farre-Mensa et al. 2017), and the scope and strength of

an issued patent (Kuhn & Thompson 2017). This variation in standards led

Cockburn et al. (2002) to conclude that “there may be as many patent offices

as patent examiners.”

3 Methods and Data

We use two approaches to measure specialization. The first approach com-

pares the actual distribution of application characteristics to the predicted

distribution under random assignment. For continuous characteristics, we

use a simple F-test from an examiner fixed-effects model. For discrete char-

acteristics such as technology classes and assignee, however, we adopt a pair

of tests from the literature on industry agglomeration. The second approach

uses regression at the application-pair level to ask whether textual similarity

predicts having the same examiner.

3.1 Agglomeration Test Statistics

Our main approach to measuring technological specialization uses two sta-

tistical tests originally developed to study industry agglomeration: the Di-

vergence Index (D-index) and the Multinomial Test of Agglomeration and

Dispersion (MTAD). In our setting, patent examiners are analogous to cities,

and technology subclasses (or other application characteristics) are analogous

to industries. We briefly describe the two tests here, and provide details in

Appendix A.
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The D-index was proposed by Mori et al. (2005), building on Kullback

& Leibler (1951), and is based on the concept of relative entropy.5 For a

given technology subclass (or other discrete characteristic) indexed by i, the

D-index is given by

D(p̂i|p0) =
∑
r∈R

p̂ir ln

(
p̂ir
p0r

)
. (1)

where r indexes individual examiners in set R; p0r is the share of all ap-

plications assigned to examiner r; and p̂ir is the share of all applications in

subclass i assigned to examiner r. If there are Ni applications in subclass i,

then 2NiD(p̂i|p0) has a chi-square distribution with R−1 degrees of freedom

under the null of random matching. In our analysis, the number of D-index

tests will equal the number of categories (e.g. one per technology subclass)

and we examine the distribution of p-values from all of these tests conditional

on a given sample-size threshold (e.g. Ni > 20).

MTAD was developed by Rysman & Greenstein (2005), and computes

multinomial likelihood functions for an allocation of agents to a set of dis-

crete locations. In our setting, the agents are patent applications and loca-

tions correspond to examiners. In particular, suppose we have R examiners,

each receiving nr applications, and C subclasses, each having unconditional

probability pc. The observed number of applications of type c assigned to

examiner r is xc
r. Under random matching of applications to examiners, the

likelihood of observing allocation xr for examiner r is the multinomial pdf

L(xr, nr,p) =

(
nr

x1
r, ..., x

C
r

)
p
x1
r

1 ... p
xC
r

C . (2)

The intuition behind MTAD is to replace pc with the observed share of sub-

class c, and then compare the sample average log-likelihood to the expected

log-likelihood under simulated random assignment. If the likelihood of the

observed data is lower (higher) than the likelihood under random choice,

MTAD indicates that the technology classes are agglomerated (dispersed).6

5Statisticians often refer to the D-index as a G test statistic. The main advantage of a
G-test relative to a chi-squared test of independence occurs when some cells in a frequency
table have very small expected counts, which is the case in our setting.

6The difference between the observed and simulated likelihood is distributed asymp-
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This approach differs from the D-index because the statistic is computed for

an entire art unit, and because it can detect whether deviations from random

assignment are due to agglomeration or over-dispersion.

3.2 Data

Our main data source is the USPTO Patent Examination Research Dataset

(Graham, Marco & Miller 2015), which is based on information from the Pub-

lic Patent Application Information Retrieval system (Public PAIR). We also

use information from PatentsView (http://www.patentsview.org), PAT-

STAT, the USPTO Patent Assignment Dataset (Marco, Myers, Graham,

D’Agostino & Kucab 2015) and the Patent Claims Research Dataset (Marco,

Sarnoff & deGrazia 2016).

We restrict our analysis to published utility patent applications filed on

or after the enactment of the American Inventor’s Protection Act of 1999

(November 29, 2000) and before January 1st 2013, whose examiner is affiliated

with one of the eight TCs responsible for the examination of utility patent

applications. The USPTO Patent Examination Research Dataset provides

information on the examiner of record for each application as of January

24, 2015. This is the examiner as of that date for pending applications

and the examiner at the time of disposal for disposed applications. The

USPTO Patent Examination Research Dataset also provides the art unit of

the examiner of record at the time of the last office action recorded for a

given application. Under the AIPA, regular utility patent applications are

generally published eighteen months after filing.7

The data have several limitations. First, applications will not appear

in our data if they are abandoned or granted before publication, or if the

applicant files only in the United States and requests that the application not

totically normal and we use simulation to generate its confidence intervals. See Rys-
man & Greenstein (2005) for details on the test. Timothy Simcoe developed a soft-
ware module to easily perform this test in Stata, available at the following link: https:

//ideas.repec.org/c/boc/bocode/s457205.html
7As in Graham et al. (2015) and in the Public PAIR data, we use the term “regular

utility patent application” to distinguish nonprovisional utility patent applications from
provisional, PCT, reissue or re-examination applications.
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be published. Previous research suggests that these outcomes are relatively

rare.8 A second limitation is that we do not observe whether applications

are transferred from one examiner to another.

Our primary analysis sample contains 2,717,032 applications examined

by 12,338 unique examiners affiliated with 590 art units. Table 1 shows the

number of art units, examiners, classes, subclasses and applications in each

Technology Center (TC). We exclude applications filed after 2012 to avoid

problems related to publication lags and a change in the USPTO technologi-

cal classification scheme. We also exclude serialized continuations (continua-

tion applications, continuations in part and divisional applications) because

these applications are usually assigned to the same examiner of the original

application, and would therefore lead us to overstate the extent of agglom-

eration.

Table 1 also reports sample sizes for the application-pair-level analyses.

The full sample contains roughly 1.1 billion application-pairs filed in the same

calendar year and processed by the same art unit. Our regressions utilize a

sub-sample of 11.7 million application-pairs that have the same filing year,

art unit, primary USPC subclass and have an assignee in our data.

3.3 Variables

We focus on several application characteristics that may influence the assign-

ment of applications to individual patent examiners within an art-unit-filing-

year.9 The first of these characteristics is the primary USPC classification

of the application, which is defined by a unique combination of primary

class and primary subclass codes (for brevity, subclass). If patent examiners

specialize in evaluating applications related to particular technologies, we ex-

pect to see agglomeration on this variable. While Lemley & Sampat (2012)

provide qualitative evidence that this may happen at least in a subset of

8Graham et al. (2015) show that about 95% of the regular non-provisional utility patent
applications filed between 2001 and 2012 can be found in Public PAIR. Moreover, only 7%
of the applications that meet all other criteria for inclusion in our main analysis sample
are not published.

9We typically compute our test statistics within a art-unit-filing-year cell to account for
possible changes in assignment practices over time and turnover in the pool of examiners.
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art units, our analysis tests this statistically on the entire population of art

units (conditional on sample size) and identifies in what TCs technological

specialization is more relevant.

We use technology classification data from published applications rather

than granted patents to avoid measuring any agglomeration created by the

examination process. In particular, because the USPC classification of an

application is based on its claims, which are usually amended during exam-

ination, the subclass of many applications changes over time. This could

lead to spurious agglomeration if certain examiners are more likely to reject

claims in particular classes.10

The last two columns in Table 1 show that for patents granted before

July 21, 2015, twenty percent of all applications change primary class dur-

ing the examination process, and almost seventy percent change primary

subclass. There is heterogeneity across TCs, with patents in Biotechnology

and Chemicals changing classification more often than those in other areas.

These changes are not problematic for our tests because, as noted above, we

use the initial classification.11

The identity of the applicant is a second variable that could influence

the allocation of applications — either directly or because of technological

specialization. Although the identity of the organization filing the application

is not visible to the SPEs at assignment, they can observe the inventors. SPEs

may group applications filed around the same time by the same inventors and

assign them to the same examiner to increase efficiency. Moreover, applicants

usually specialize in certain technologies, and may assigned to examiners who

specialize in the same area.

We measure the identity of the applicant with the assignee of an applica-

tion. Specifically, we retrieve information on the assignment of applications,

identify the assignments made by the inventors to their employers before the

10The data in Public PAIR provide only the most recent classification of an application,
so we utilize the primary classification of applications at publication from PatentsView,
which is more likely to reflect the classification contractor’s original assignment.

11Many papers utilize USPC (sub)classes as a control variable, and future research
might consider whether it is better to measure this variation at the time of application
publication or grant.
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application is docketed to an examiner and keep only applications assigned

to a single entity, clean and standardize the assignee names and create clus-

ters of names that are likely to belong to the same organization, to which

we assign a unique identifier.12 After completing this process, we have miss-

ing assignee data for 584,313 applications (about 20% of our main analysis

sample).13

To check the robustness of our assignee measurement, we utilize a second

measure of the applicant identity: the customer number assigned by USPTO

to each application. This number identifies the correspondent for application-

related matters and is usually either the law firm representing the applicant

or the legal department of the firm filing the application.14

The size of a patent family is often used as a proxy for the economic

value of an invention because increased value leads patentees to file in more

countries (Harhoff, Scherer & Vopel 2003, Putnam 1996). We utilize the

number of applications in the same DOCDB patent family, with filing dates

on or before the focal application date, as a proxy for economic value. We

treat family-size as a continuous variable, and also construct an indicator

variable that equals one if a focal application is above the 95th percentile in

the family size distribution (within an art-unit-filing-year) to test whether

certain examiners are assigned a large share of “outlier” applications.15

Kuhn & Thompson (2017) show that the length of the first independent

12We employ an assignee name cleaning and standardization routine that builds
upon Thoma, Torrisi, Gambardella, Guellec, Hall & Harhoff (2010) and the
name standardization routines developed for the NBER Patent Data Project
available at https://sites.google.com/site/patentdataproject/Home/posts/

namestandardizationroutinesuploaded. Details are available upon request.
13Although this is a relatively large percentage of applications with missing values,

we note that around 8% of granted patents are not assigned, and would therefore be
unassigned at application. Utilizing the normalized differences in average covariates
(Imbens 2015), we find that assigned and unassigned applications do not differ substan-
tially in terms of filing year, family size at filing (both DOCDB and INPADOC), length
of first independent claim, number of claims and of independent claims. The normalized
differences range between -0.03 and 0.06, much below the usual thresholds that reveal
serious imbalances. These results are available on request.

14Results of the customer number analysis are similar to those for the assignee and are
available upon request.

15We test the robustness of these results using the INPADOC patent families. The
results are similar to those for DOCDB patent families and are available upon request.
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claim in a patent is a good measure of patent scope. The idea behind this

measure is that shorter claims provide broader scope of patent protection,

because every word added to the text of the claims can potentially intro-

duce additional elements or characteristics that must be present to establish

infringement. Again, we consider both a simple count of words in the first

independent claim, and a dummy variable that equals one if and only if a

patent application falls below the 5th percentile of the word count distribu-

tion.16

Finally, in our application-pair-level analyses, the outcome variable is an

indicator variable equal to one for pairs that share the same examiner. The

main explanatory variables are a Jaccard similarity index based on keywords

in the abstract and title of each application, and an indicator variable equal

to one for pairs filed by the same assignee.

To compute the Jaccard similarity, we pre-process the abstracts and titles

of all published patent applications from the PatentsView patent application

database following the procedure described in Arts et al. (2018). Then, for

every pair where both applications have at least 10 keywords and share the

same art unit and filing year, we compute the Jaccard similarity index as

100 times the number of unique keywords in the intersection of the two sets

of keywords, divided by the number of unique keywords in the union of the

two sets. Intuitively, this variable measures the percentage overlap of unique

keywords. Arts et al. (2018) validate the Jaccard similarity index for the pop-

ulation of granted patents using a panel of experts and information on patent

families, inventors, assignees and patent citations. In particular, they show

that matching on the Jaccard index outperforms matching on the primary

USPC subclass, based on the mean scores from an expert evaluation.17

16Because Kuhn & Thompson (2017) note that their measure of scope is not suitable
for the analysis of patent scope in biotechnology, we exclude the Biotechnology TC from
the analysis of this variable. We have also conducted tests based on a pair of alternative
proxies fro the scope of the application: the total number of claims in the application and
the number of independent claims. The results are similar to those reported in Tables 2
and 3, and are available from the authors on request.

17Summary statistics for all variables are reported in Table B1.

11



4 Results

This section presents evidence of patent examiner specialization, and regres-

sion results linking specialization to examination outcomes.

4.1 Examiner Specialization

Figure 1 shows that patent examiners handle more applications from a given

subclass or assignee than we would expect under random allocation. Specif-

ically, each panel shows a histogram of p-values from a sample of hypothesis

tests. For the D-index (top row), we run a separate test for each art-unit-

filing-year by subclass or assignee cell containing more than 20 applications.

For MTAD (bottom row) we run a separate test for each art-unit-filing-year

cell containing more than 50 applications.18

Under the null of random assignment, the p-values in Figure 1 should be

uniformly distributed between zero and one. However, in each panel a large

share of the test-statistics fall below the 1 percent statistical significance

threshold, providing strong evidence of specialization. The two histograms

in the left column indicate that about 25 percent of the D-index and MTAD

tests for random USPC assignment have a p-value below 0.01. The two his-

tograms in the right column show somewhat weaker evidence of specialization

by assignee, with about 10 to 20 percent of the p-values falling below the 1-

percent threshold. Overall, Figure 1 shows that the allocation of applications

within art units is often far from random, and that SPEs take into account

the technological classification when assigning applications to an examiner,

as described in Lemley & Sampat (2012).

Table 2 examines the degree of examiner specialization in different TCs,

and for an additional pair of application characteristics. Specifically, the

table reports the share of D-index or MTAD tests that reject the null hy-

pothesis of random allocation at a 1-percent significance level.19 Panel A

18All of our results are robust to varying the within-cell sample size cutoffs, but going
much below these thresholds leads to large numbers of uninformative tests. Figure B1
shows the distributions of p-values of D-index and MTAD for subclass and assignee with
thresholds equal to, respectively, 10 and 25.

19Table B3 in the appendix reports analogous figures with a cutoff at the 5-percent
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shows that there is evidence of examiner specialization in every TC, and

all of the MTAD results indicate agglomeration rather than over-dispersion.

The share of tests that reject random assignment is much lower, however,

in the “Computer Architecture” and “Computer Networking” areas than for

Biotechnology, Chemistry, Semiconductors and Mechanical Engineering. The

results in Panel B, using assignees rather than subclasses, are very similar.

The lower half of Table 2 examines agglomeration for our dichotomous

variables that measure whether an application is in the top ventile of the

Family Size or Claim Scope distribution. These variables focus on extreme

outcomes because we are interested in whether SPEs assign unusual appli-

cations to a specific set of examiners. The data suggest that, for the most

part, they do not. There is some evidence that applications from very large

families are concentrated among a smaller set of examiners for Chemicals,

Communications, Semiconductors, Mechanical Engineering and the TC we

labeled as “Miscellaneous.” There is also evidence of specialization in broader

patents (as measured by length of the first claim) in the Chemical and Ma-

terials Engineering and Semiconductors TCs. In general, the MTAD tests

detect more evidence of specialization than the D-index. But overall, these

effects as relatively small, and might easily be caused by the technological

specialization observed in Panel A.

While the results in Panels C and D suggest that there is little sorting

based on extreme values, this does not imply that the assignment of appli-

cations is completely random with respect to value or scope. To test for

random assignment with respect to these two characteristics, we run a set of

OLS models in which we regress either the count of DOCDB family members

at filing date (Panel A) or the count of words in the 1st independent claim

(Panel B) against a set of examiner fixed-effects. This analysis is based on

the idea that if the assignment of applications is really random, the examiner

fixed-effects should not have explanatory power.

We estimate one regression for each art-unit-filing-year subsample and

report the results by TC in Table 3. The first column reports the share of

F-tests that reject the null hypothesis that the examiner effects are jointly

threshold for statistical significance.
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zero at 1% significance level, and the second column reports the number of

regressions for each TC. The share of F-tests rejecting the null hypothesis

is much larger than the share we would expect under random assignment in

each TC. Interestingly, the examiner fixed-effects seem to be less related to

value and scope in the Computers & Communications TCs. This is consistent

with the idea that the assignment is more random in those TCs.

Because these results may reflect technology specialization, we re-run the

models including subclass effects. The results are reported in the third and

fourth column of Table 3. The share of F-tests rejecting the null hypothesis

drops significantly in all TCs, suggesting that differences across technologies

explain a substantial share of the differences across examiners detected by

the previous tests. In relative terms, the drop in the share of rejections is

less marked in the Computers & Communications TCs.

Overall, the results in this sub-section show that patent examiners spe-

cialize in particular technologies, even within fine-grained USPC technology

subclasses. There is more specialization in Chemistry, Biotech, Mechanical

Engineering and Semiconductors, and less in computer-related technology.

While examiner fixed effects are correlated with family size and scope, con-

trolling for differences in technology attenuates these relationships and we

find very little evidence that certain examiners specialize in “outlier” patent

applications.

4.2 Text-based Specialization Tests

The findings in Tables 2 and 3 raise two questions: (1) What explains hetero-

geneity in specialization across TCs?, and (2) Is examiner-application match-

ing effectively random within narrower technology subclasses?

With respect to the the first question, there are at least two reasons why

we might find less specialization in the computer-related art units. First,

examiners in the less agglomerated TCs may be “generalists” who are capable

of evaluating most applications within their art unit. This would naturally

lead SPEs to adopt a more random allocation process. Alternatively, patent

examiners in the Computers and Communications TCs might be just as
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specialized as their counterparts in other TCs, but this is not apparent to

us because the USPC classification system is less representative of actual

technological differences in these fields.

If we want to evaluate the USPC classification system, an alternative

measure of technological distance is required. Prior research has examined

overlap of primary and secondary classification codes to measure technical

similarity (Breschi, Lissoni & Malerba 2003). We use the Jaccard similarity

index, because it does not depend on technological classifications.

The first column of Table 4 reports the mean Jaccard similarity for

application-pairs within art-unit-filing-years by TC, and column (2) reports

the mean Jaccard similarity conditional on sharing the same primary sub-

class. Not surprisingly, pairs sharing the same primary subclass are more

similar across all TCs.20 To compare the magnitude of these differences,

column (3) reports the percentage change in mean Jaccard similarity when

conditioning on sharing the same primary subclass. The percentage increase

in keyword similarity is large for all TCs, indicating that the USPC system

does capture a substantial amount of the variation reflected in the Jaccard

measure. However, the percentage increase is much smaller in the Computer

and Communication TCs than in other areas, suggesting that the USPC

system works less well for those technologies.

To compare “examiner generality” across TCs, we repeat the same exer-

cise, conditioning on application pairs with a common examiner instead of a

shared primary subclass. Columns (4) and (5) of Table 4 show the results.

It is not surprising that having the same examiner is less related to tech-

nological similarity of applications than having the same subclass because

there are many more subclasses than examiners. Nevertheless, in each TC,

application-pairs assigned to the same examiner are more similar than those

with different examiners. The percentage changes are much smaller in the

20Given the relatively small percentage of application-pairs sharing the same subclass,
the unconditional mean similarity is almost identical to the mean similarity conditional
on having two different primary subclasses, and we omit the latter statistic for brevity.
The same logic applies to the analysis in which we consider the examiner instead of the
subclass. The t-tests for the differences in mean Jaccard similarity between application-
pairs with the same or a different subclass or examiner are all statistically significant at
1%.
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Computers and Communications TCs, suggesting that examiners in that area

are assigned more heterogeneous applications. The increase in technological

similarity is especially high in Chemistry, where having the same examiner

is associated with a 55% increase in the Jaccard similarity.

The results in Table 4 provide evidence supporting both of our potential

explanations for differences in examiner specialization across TCs. In par-

ticular, we find that applications sharing a primary USPC subclass exhibit

more similarity in Biotechnology and Chemistry and less in computing. On

the other hand, examiners in Computers and Communications examine more

diverse applications, which is consistent with a more random allocation of

applications.21

We turn now to our second question — is examiner-application match-

ing effectively random within subclass? To provide an answer, we construct

a data set of all application-pairs sharing the same art unit, filing year and

primary subclass, and regress a dummy for having the same examiner on two

main explanatory variables: a dummy variable for having the same assignee

and the Jaccard similarity index (multiplied by 100 and standardized). We

use the Jaccard similarity as a measure of the residual technological special-

ization that is not captured by the subclasses. Conditional on the subclasses

and the Jaccard similarity, the same assignee dummy should capture the ag-

glomeration based on the identity of the assignee that is not explained by

observable similarities in technology.22 Under the null hypothesis of random

assignment within primary subclass, the coefficients of the Jaccard similarity

index and of the same assignee dummy should be close to zero (and statisti-

21Table B4 in the appendix uses the data from Frakes & Wasserman (2017) to show
that examiner specialization increases with tenure at the USPTO. Details of this analysis,
and additional regression results showing that specialization increases with seniority, are
available from the authors on request.

22We limit the sample to application pairs where both applications have an assignee and
art-unit-filing-year-subclasses with at least two pairs. In this sample, the mean Jaccard
similarity is 0.079 (standard deviation 0.1). About 11% of the application pairs in this
sample have the same examiner, and about 7% have the same assignee. The application-
pairs with the same assignee are technologically very similar: the mean Jaccard similarity
for application-pairs assigned to the same organization in this sample is 0.25. Also, this
mean is particularly high in Biotech, where it is 0.74, and relatively lower in the computing-
related TCs.

16



cally insignificant).23

Table 5 presents the results. For the full sample, the estimates in col-

umn (1) imply that having the same assignee is correlated with a 5.3 per-

centage point increase in the probability of having the same examiner. This

is a large increase, given that 11% of the application pairs in this sample

have the same examiner. The coefficient on the same assignee dummy drops

to 2.5 with the addition of art-unit-filing-year-subclass fixed effects, but re-

mains statistically significant and economically large. The Jaccard similarity

index is also positively associated with the probability of having the same

examiner. A one standard deviation increase in the Jaccard similarity of

an application-pair is correlated with a 1 percentage point increase in the

probability of having the same examiner in column (1), and a 2.6 percentage

point increase in column (2).

The lower half of Table 5 shows the results by TC.24 The main message of

this set of estimates is that we still observe technological specialization within

subclasses. The same assignee dummy is statistically significant at 1% and

relatively large in all TCs except Biotechnology. Similarly, the coefficient of

the Jaccard similarity is positive, statistically significant at least at 5% and

large in all TCs.

Overall, the results in this sub-section suggest that the USPC classifica-

tion is relatively more effective at capturing actual technological similarities

in Biotech and Chemistry, and less in computing. At the same time, examin-

ers in Computers and Communications do examine less similar applications,

consistent with the idea that they are more “generalist” than other exam-

iners. We also use the Jaccard similarity measure to show that even within

USPC subclasses, there is evidence of examiner specialization.

4.3 Specialization and Examination Outcomes

As a final step in our empirical analysis, we explore the relationship between

examiner specialization and patent examination outcomes. We focus on three

23We cluster the standard errors at the art-unit-filing-year level in order to avoid the
issue of within-dyad correlations, as discussed in Cameron & Miller (2014).

24For these estimates, we standardize the Jaccard similarity index within each TC.
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outcomes: (i) whether an application is granted, (ii) the change in the number

of words in the first independent claim between the published application

and the granted patent, and (iii) the number of days required to process the

application (i.e., the difference between the date an application is docketed

to an examiner for the first time and its disposal date). Our sample for

this part of the analysis consists of all applications belonging to an art-unit

by examiner by filing-year cell containing more than 10 applications. We

also drop a small number of examiner-art-unit-filing-year groups that have

only one application in the estimation sample after we dropped pending

applications and those filed after year 2009 to account for truncation.

Our unit of analysis is the application, and we adopt a measure of special-

ization that varies across both examiners and applications. Specifically, our

main explanatory variable is the share of an examiner’s applications (within

an art-unit-filing-year cell) having the same subclass as a focal application.

To be more precise, define the set kit(j) of all patents (except for patent i) as-

signed to examiner j and filed in year t.25 Let njt represent the total number

of patents reviewed by examiner j filed in year t, and define an indicator 1mn

that equals one if and only if two patents (m and n) have the same subclass.

Our main explanatory variable can be written as:

Shareijt =

∑
m∈kit(j) 1mi

njt − 1
. (3)

Intuitively, Shareijt equals the probability that a random draw from the pool

of applications filed in year t assigned to examiner j has the same subclass

as the focal application.

All of our regressions control for application characteristics. To control

for economic importance and scope, we include the natural logarithms of the

number of DOCDB family members at the filing date and the number of

independent claims. We also include an indicator variable for small entity

status of the applicant and a dummy for applications whose first inventor has

a US address to control for differences in examination related to the identity

25For this analysis we consider an examiner affiliated with two (or more) different art
units in the same year as two (or more) examiners.
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of the applicant (Carley, Hedge & Marco 2015).

Table 6 presents estimates from a series of OLS panel-data regressions

that examine the correlation between Shareijt and examination outcomes.

To ease interpretation, we standardize Shareijt and the outcome variables

except the dummy for granted patents.26 Standard errors are clustered at

art-unit-filing-year level in all models.

Columns (1) through (3) report coefficient estimates from a within-examiner

regression with art-unit-examiner-filing-year fixed effects. The coefficients of

Shareijt are all positive but very close to zero. Columns (4) through (6)

report the results from a between-examiner analysis, where we regress the

mean outcome for each art-unit-examiner-filing-year on the mean of Shareijt.

The coefficient in Column (4) indicates that a one standard deviation in-

crease in Shareijt leads to a 3 percentage point drop in the grant rate. This

suggests that specialized examiners are also more stringent. The coefficient

in column (5) also suggests that specialization leads to more stringent ex-

amination. However, the economic magnitude of this result is rather small:

a one standard deviation change in Shareijt produces a 0.05 standard de-

viation change in the number of words added to the first claim. Finally, in

column (6) we find a small but statistically significant positive association

between specialization and the time required to process a patent examina-

tion.27

The overall message of this part of the analysis is that examiner spe-

cialization is related to more stringent examination, although the economic

magnitudes are not dramatic. This relationship is driven by differences across

examiners, as showed by the “between” estimators in Table 6. We do not

find important differences in the relationship between specialization and ex-

amination outcomes “within” examiners. One plausible explanation for the

finding is that it is easier for examiners that are more specialized to find

relevant prior art because they are more familiar with certain fields of tech-

26Table B2 displays summary statistics for all variables used in this part of the analysis.
27Unreported models that do not include control variables for application characteristics

estimate coefficients of Shareijt slightly bigger in magnitude. Under random assignment,
the inclusion of control variables should not affect the magnitude of the estimated coeffi-
cients.
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nology, leading to narrower claims and an increased probability of application

abandonment. Under random assignment, these estimates are causal. We

prefer a descriptive interpretation. Nevertheless, these results confirm the

importance of differences across examiners for examination outcomes.

5 Implications for Examiner Instruments

If patent applications were randomly assigned to patent examiners, then

examiner characteristics — including the quality of examination and the

propensity to grant — would be uncorrelated with unobserved characteristics

of the application. When examiners specialize, however, their attributes

and behaviors might be correlated with (or even caused by) the technologies

they examine, which could lead to a violation of the exclusion restriction in

instrumental variable estimates.

Readers may be tempted to conclude that the preceding paragraph “in-

validates” examiner-based instrumental variables. That is not correct. The

validity of the IV assumptions need to be evaluated in the context of a spe-

cific application, and in any case, are not amenable to direct testing. Rather,

our findings imply that random matching cannot be invoked to justify us-

ing examiner characteristics as a general-purpose tool for identifying causal

effects of the patent examination process.

On a more constructive note, our findings also suggest some ways to “fix”

examiner-based instruments in settings where they would be useful. One

response to the non-random matching problem is to condition on fine-grained

measures of technology. While this is clearly a good idea, the results in Table

3 (correlation between examiner fixed effects and observables) suggest that

even within USPC subclasses examiners and observables may be correlated,

and those in Table 5 (based on the Jaccard similarity index) show that some

unobserved specialization will remain. Furthermore, the results in Table 4

show that the quality of the USPC classification varies across TCs, suggesting

that this strategy may be more effective in some art units and less in others.

A related issue regarding (sub)class effects concerns the time at which

one observes the technological classification of applications. Table 1 shows
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that applications often change technological classification throughout exami-

nation. Classes and subclasses are thus partially affected by the examination

process. Researchers willing to control for (sub)class effects may need to

control for technological classifications at the time of filing or publication in-

stead of relying on classifications currently available in Public PAIR or other

databases that provide updated data.

The sheer number of subclasses creates an additional difficulty. Adding

subclass fixed effects to an IV regression will not purge all specialization-

induced technological variation from a leave-one-out grant rate or similar IV

constructed at the examiner-year level.28 But there are typically too few

observations within examiner-subclass-year cells to construct the instrument

at this more disaggregated level. A possible solution would be to utilize data

within 3-digit classes instead of subclasses, but this will not capture part of

the technological specialization happening within classes. Another solution

would be to focus on large subclasses, or to group together data for subclasses

from multiple years.

A second response to potential endogeneity is to check whether a par-

ticular instrument is correlated with observed differences in technology. Of

course, failing to reject the null hypothesis within a particular sample does

not validate the instrument — more data or better measures could lead to a

different result.29

A third approach would be to focus on areas in which the assignment of

28Formally, suppose that the probability of issuance for patent i, in class c, assigned to
examiner j is given by Pr(Gijc = 1) = θj + ηc (i.e. an examiner-specific leniency and a
subclass effect). The examiner-year level IV would then be Zijc = Ek 6=i[Gkjc] = θj+E[η|j].
The last term depends on the classes assigned to examiner j, and will vary across examiners
within a subclass-year.

29For example, Sampat & Williams (2017) regress patent grant on their measure of
examiner leniency with and without subclass fixed effects, and obtain very similar point
estimates (not statistically distinguishable) for the two specifications. We performed a
similar exercise using our full sample of applications, along with new data on the primary
USPC subclass at the time of publication, and find that adding subclass effects produces
modest changes in the size of first-stage estimates – between 5 and 10 percent for the
full sample. In our models, the subclass effects are always jointly significant, and the
change in the first-stage coefficient is generally larger for TCs that exhibit more examiner
specialization in our prior results. Table B5 presents the results of this exercise for two
different IV-endogenous variable combinations.
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applications is more consistent with random assignment. For example, our

results suggest it is more plausible to assume that technology is uncorrelated

with potential outcomes for information technology art units, while the same

assumption is potentially problematic for art units in other TCs. Researchers

could also exploit differences in assignment practices even within TCs. For

example, Feng & Jaravel (2017) use agglomeration tests to identify art units

in which applications are often assigned to examiners based on the last digit

of the application, and so assignment practices may be less related to relevant

application characteristics.

To sum up, we propose the following implications for those who still wish

to use examiner characteristics as instruments, perhaps because (like us) they

see the approach as a clear step forward in terms of measuring the causal

impacts of intellectual property. First, it is important to carefully control for

any observable differences in technology. Class or subclass fixed effects are

not a panacea, but they are nevertheless a step in the right direction. Con-

trolling for identity of the applicant, for example with assignee fixed effects,

or for different groups of applicants (e.g. small entities or foreign applicants),

may also help to capture technological heterogeneity and other characteris-

tics. Second, it may be important to take into account specialization also

in the computation of the grant rates or other examiner-based IVs. Third,

instead of claiming that applications are randomly matched to examiners,

authors should clearly explain the key identification assumption: conditional

on observables, examiner characteristics must be uncorrelated with potential

outcomes, regardless of any technological sorting. This assumption is not

testable, and its reasonableness will vary from one application to the next.

Checking that examiner characteristics are not correlated with application

characteristics is an important step in assessing the credibility of the identifi-

cation strategy in a given application. Finally, our results suggest it is more

plausible to assume that technology is uncorrelated with potential outcomes

for information technology art units, while the same assumption is poten-

tially problematic for art units in other TCs. Researchers may also explore

heteroegeneity of assignment practices across art units to understand in what

contexts the key identification assumption is more credible.
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6 Conclusions

We study a key stage of patent examination: the assignment of applications

to examiners. We first focus on characterizing the degree of examiner special-

ization. Using two statistical tests designed to study industry agglomeration,

we find strong evidence that examiners specialize in particular subclasses,

even within relatively homogeneous art units. The degree of specialization

varies across fields, with examiners in the Computers and Communications

area exhibiting relatively little specialization compared to those in other TCs.

We also use a measure of textual similarity (and the identity of the assignee)

to illustrate residual technological specialization within subclasses. Finally,

we show that more specialized examiners are more stringent on average —

they have a lower grant rate, and produce a larger reduction in the scope of

issued patents’ first independent claim.

It may not seem surprising that we can reject the hypothesis of random

matching between applications and examiners. After all, one reason for hav-

ing a patent classification system is to help route applications to appropriate

examiners. Also, it is reasonable that SPEs take into account the different

skills of their examiners when they assign applications. However, several

studies have argued that more-or-less random matching (within art units)

provides a justification for using examiner behaviors and characteristics as

instruments for examination outcomes. Our findings do not invalidate this

identification strategy – patent examiner characteristics might still satisfy

the relevant exclusion restrictions – but they do imply that we cannot rely

on purely random assignment to justify the approach.

On a more positive note, our results provide some evidence on how the

USPTO balances the demands of efficiency and fairness. Technological spe-

cialization is likely to be efficient. Fairness can be achieved by enforcing

uniform examination standards, which is difficult, or through random assign-

ment, which guarantees all applicants an equal shot at the more “friendly”

examiners. Examiner assignment appears relatively more (but not entirely)

random in the computer-related TCs. And even without controlling for tech-

nology, there is little evidence that certain examiners within a given art unit
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are assigned to the applications with the largest families or broadest claims.

We leave to future researchers the question of whether the current level of

procedural fairness to applicants is also the best policy in terms of social

welfare.

Finally, our analysis opens up several avenues for research into the causes

and consequences of how work is organized at the USPTO. For example, it

might be interesting to study how specialization varies over time for individ-

ual examiners, or within a given art unit. Future research could also study

additional outcomes, such as re-examinations, re-issues or invalidation rates

of patents issued by examiners with different levels of specialization to better

understand the consequences of specialization for patent quality.
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Tables and Figures

Figure 1: Distribution of P-values from D-index (Top) and MTAD (Bottom)
for USPC Subclass and Assignee

0
5

10
15

20
25

30
35

40
45

50
P

er
ce

nt

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1
p value

Number of tests: 11998
Mean # of applications per test (standard deviation): 38.67 (28.46)

D index - USPC subclass

0
5

10
15

20
25

30
35

40
45

50
P

er
ce

nt

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1
p value

Number of tests: 9716
Mean # of applications per test (standard deviation): 40.95 (29.93)

D index - Assignee

0
5

10
15

20
25

30
35

40
45

50
P

er
ce

nt

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1
p value

Number of tests: 5582
Mean # of applications per test (standard deviation): 481.59 (415.72)

MTAD - USPC subclass

0
5

10
15

20
25

30
35

40
45

50
P

er
ce

nt

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1
p value

Number of tests: 5405
Mean # of applications per test (standard deviation): 388.81 (338.11)

MTAD - Assignee

Distribution of p-values of D-index and MTAD analysis for USPC subclass and Assignee

(cleaned and standardized). Tests on subsamples with more than 20 applications for

D-index and 50 applications for MTAD. Vertical red lines are standard thresholds for

statistical significance (0.01, 0.05 and 0.10)

27



T
ab

le
1:

S
u
m

m
ar

y
S
ta

ti
st

ic
s

b
y

T
ec

h
n
ol

og
y

C
en

te
r

A
rt

S
u

b
-

A
p

p
A

p
p

p
a
ir

s,
C

la
ss

S
u

b
cl

a
ss

U
n

it
s

E
x
am

in
er

s
C

la
ss

es
C

la
ss

es
A

p
p

li
ca

ti
o
n

s
p

a
ir

s∗
sa

m
e

su
b

cl
a
ss
∗

C
h

a
n

g
ed
†

C
h

a
n

g
ed
†

B
io

te
ch

n
ol

og
y

(1
60

0)
57

1,
01

3
26

8
1
1
,5

3
0

2
2
1
,5

8
6

5
1
.1

M
2
.5

M
3
2
.3

7
5
.3

C
h

em
ic

al
s

(1
70

0)
75

1,
37

7
4
1
1

3
4
,5

0
9

3
6
7
,3

7
1

1
6
6
.6

M
1
.2

M
3
1
.3

7
7
.7

C
om

p
/C

om
m

(2
10

0)
79

1,
73

3
30

3
7
,3

1
4

2
0
8
,1

0
2

3
1
.1

M
1
.2

M
2
3
.4

7
0
.7

C
om

p
/C

om
m

(2
40

0)
77

1,
28

9
15

9
4
,4

9
2

1
5
7
,8

5
2

2
3
.7

M
0
.8

M
1
8
.5

5
9
.7

C
om

p
/C

om
m

(2
60

0)
82

2,
04

6
31

0
1
4
,3

9
3

3
3
8
,0

8
8

2
0
8
.0

M
3
.7

1
5
.4

6
5
.7

E
le

ct
ri

ca
l

(2
80

0)
80

2,
16

1
3
8
2

3
1
,8

1
5

6
3
7
,9

2
9

3
2
1
.0

M
4
.3

M
1
7
.5

6
5
.2

M
is

ce
ll

an
eo

u
s

(3
60

0)
75

1,
61

7
41

0
3
8
,7

6
0

3
6
0
,6

9
1

1
1
4
.5

M
2
.0

M
1
6
.8

6
8
.8

M
ec

h
an

ic
al

(3
70

0)
65

1,
94

9
41

1
4
0
,2

4
0

4
2
5
,4

1
3

1
8
0
.5

M
1
.9

M
1
8
.6

6
8
.9

F
u

ll
sa

m
p

le
59

0
12

,3
38

45
2

1
1
9
,4

4
8

2
,7

1
7
,0

3
2

1
,0

9
6
.4

M
1
7
.6

M
2
0
.4

6
8
.5

∗
A

p
p

li
ca

ti
o
n

p
a
ir

s
w

it
h

sa
m

e
a
rt

u
n

it
,

fi
li
n

g
y
ea

r
(a

n
d

su
b

cl
a
ss

)
w

it
h

a
t

le
a
st

1
0

u
n

iq
u

e
k
ey

w
o
rd

s
fo

r
b

o
th

a
p

p
li
ca

ti
o
n

s.
† P

er
ce

n
t

o
f

a
p

p
li

ca
ti

o
n

s
w

it
h

ch
a
n

g
e

in
(s

u
b

)c
la

ss
co

n
d

it
io

n
a
l

o
n

g
ra

n
t

b
ef

o
re

J
u

ly
2
1
,

2
0
1
5
.

C
la

ss
ifi

ca
ti

o
n

d
a
ta

fo
r

p
u

b
li
sh

ed
a
p

p
li
ca

ti
o
n

s
a
n

d
g
ra

n
te

d
p

a
te

n
ts

fr
o
m

P
a
te

n
ts

V
ie

w
.

F
u

ll
sa

m
p

le
co

u
n
ts

re
m

o
v
e

d
u

p
li
ca

te
s

a
cr

o
ss

T
C

s.
A

b
b

re
v
ia

te
d

T
C

n
a
m

es
fr

o
m

G
ra

h
a
m

et
a
l.

(2
0
1
5
).

F
u

ll
n

a
m

es
o
f

th
e

T
C

s
cu

rr
en

tl
y

re
sp

o
n

si
b

le
fo

r
ex

a
m

in
a
ti

o
n

o
f

u
ti

li
ty

p
a
te

n
t

a
p

p
li
ca

ti
o
n

s
a
re

:
•

1
6
0
0

-
B

io
te

ch
n

o
lo

g
y

a
n

d
O

rg
a
n

ic
C

h
em

is
tr

y
•

1
7
0
0

-
C

h
em

ic
a
l

a
n

d
M

a
te

ri
a
ls

E
n

g
in

ee
ri

n
g

•
2
1
0
0

-
C

o
m

p
u

te
r

A
rc

h
it

ec
tu

re
,

S
o
ft

w
a
re

,
a
n

d
In

fo
rm

a
ti

o
n

S
ec

u
ri

ty
•

2
4
0
0

-
C

o
m

p
u

te
r

N
et

w
o
rk

s,
M

u
lt

ip
le

x
co

m
m

u
n

ic
a
ti

o
n

,
V

id
eo

D
is

tr
ib

u
ti

o
n

,
a
n

d
S

ec
u

ri
ty

•
2
6
0
0

-
C

o
m

m
u

n
ic

a
ti

o
n

s
•

2
8
0
0

-
S

em
ic

o
n

d
u

ct
o
rs

,
E

le
ct

ri
ca

l
a
n

d
O

p
ti

ca
l

S
y
st

em
s

a
n

d
C

o
m

p
o
n

en
ts

•
3
6
0
0

-
T

ra
n

sp
o
rt

a
ti

o
n

,C
o
n

st
ru

ct
io

n
,

E
le

ct
ro

n
ic

C
o
m

m
er

ce
,

A
g
ri

cu
lt

u
re

,
N

a
ti

o
n

a
l

S
ec

u
ri

ty
a
n

d
L

ic
en

se
&

R
ev

ie
w

•
3
7
0
0

-
M

ec
h

a
n

ic
a
l

E
n

g
in

ee
ri

n
g
,

M
a
n
u

fa
ct

u
ri

n
g
,

P
ro

d
u

ct
s

28



Table 2: D-index and MTAD Tests within Art-Unit-Filing-Year (Share Re-
jecting Random Allocation at 1% Significance Level, by Technology Center)

Panel A: USPC subclass
D-index MTAD

Technology Center Rej. N Agg. Disp. N
Biotechnology and Organic Chemistry 32.9 906 19.6 0.2 551
Chemical and Materials Engineering 58.6 814 55.8 0.0 721
Computer Architecture, Software, and Security 2.2 1,170 0.7 0.0 723
Computer Networking and Video Distribution 6.5 753 0.8 0.0 628
Communications 17.7 2,268 16.7 0.0 694
Semiconductors, Electrical and Optical Systems 37.4 3,389 39.5 0.0 843
Miscellaneous† 15.4 1,162 21.7 0.1 742
Mechanical Engineering, Manufacturing, Products 38.9 1,536 39.4 0.0 680

All tests 27.5 11,998 25.0 0.0 5,582

Panel B: Assignee
D-index MTAD

Technology Center Rej. N Agg. Disp. N
Biotechnology and Organic Chemistry 50.2 225 9.1 0.0 527
Chemical and Materials Engineering 46.1 866 30.9 0.0 699
Computer Architecture, Software, and Security 4.2 970 0.0 0.0 709
Computer Networking and Video Distribution 5.3 509 0.2 0.0 616
Communications 11.0 1,879 6.3 0.0 668
Semiconductors, Electrical and Optical Systems 19.6 3,360 15.0 0.1 824
Miscellaneous† 29.3 818 13.4 0.0 703
Mechanical Engineering, Manufacturing, Products 36.0 1,089 19.1 0.0 659

All tests 21.4 9,716 12.0 0.0 5,405

Panel C: Top Ventile of DOCDB Family Size
D-index MTAD

Technology Center Rej. N Agg. Disp. N
Biotechnology and Organic Chemistry 0.8 772 3.1 0.0 549
Chemical and Materials Engineering 3.7 1,018 5.4 0.0 716
Computer Architecture, Software, and Security 0.5 860 2.1 0.0 723
Computer Networking and Video Distribution 0.3 742 1.1 0.0 627
Communications 2.5 1,011 4.5 0.0 690
Semiconductors, Electrical and Optical Systems 3.8 1,427 6.1 0.0 841
Miscellaneous† 2.4 1,149 4.7 0.0 738
Mechanical Engineering, Manufacturing, Products 3.9 1,089 7.2 0.0 678

All tests 2.5 8,068 4.4 0.0 5,562

Panel D: Bottom Ventile of Words in 1st Claim
D-index MTAD

Technology Center Rej. N Agg. Disp. N
Chemical and Materials Engineering 3.5 1,129 5.1 0.0 721
Computer Architecture, Software, and Security 0.0 895 0.1 0.0 723
Computer Networking and Video Distribution 0.0 755 0.0 0.0 627
Communications 0.2 1,052 0.1 0.0 693
Semiconductors, Electrical and Optical Systems 2.1 1,524 5.1 0.0 843
Miscellaneous† 0.7 1,194 1.8 0.0 741
Mechanical Engineering, Manufacturing, Products 0.8 1,160 0.7 0.0 679

All tests 1.2 7,709 2.0 0.0 5,027

For D-index, columns labelled “Rej.” report the share of tests that reject the null hypothesis of equality between
the observed and the reference distribution at 1% level. For MTAD, columns labelled “Agg.” (“Disp.”) report
the share of tests that reject the null hypothesis of random allocation at 1% level in favor of agglomeration
(dispersion). All tests are conducted within art-unit-filing-year cells with more than 20 applications for the D-

index and more than 50 applications for MTAD. † Miscellaneous = “Transportation, Construction, Electronic
Commerce, Agriculture, National Security and License & Review.”
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Table 3: Regressions of DOCDB Family Size and Words in 1st Claim against
Examiner Fixed Effects: Share of F-tests Rejecting Null Hypothesis at 1%
Significance Level, by Technology Center.

Panel A: DOCDB Family Size
Examiner FEs Examiner FEs,

controlling for subclass
Technology Center Rej. N Rej. N
Biotechnology (1600) 22.4 509 6.5 489
Chemicals (1700) 31.8 651 6.3 443
Comp/Comm (2100) 12.6 666 8.3 640
Comp/Comm (2400) 23.7 566 15.3 561
Comp/Comm (2600) 29.8 568 17.7 491
Electrical (2800) 26.8 776 10.4 657
Miscellaneous (3600) 24.4 676 8.4 585
Mechanical (3700) 34.0 642 12.3 575

Panel B: Words in 1st Claim
Examiner FEs Examiner FEs,

controlling for subclass
Technology Center Rej. N Rej. N
Chemicals (1700) 32.6 651 7.0 442
Comp/Comm (2100) 5.6 665 3.3 639
Comp/Comm (2400) 3.7 566 2.9 561
Comp/Comm (2600) 12.9 568 5.9 491
Electrical (2800) 27.4 776 8.2 658
Miscellaneous (3600) 13.3 676 3.9 586
Mechanical (3700) 22.4 642 4.2 575

We run a separate OLS regression for the applications in each art-unit-filing-year
group, using the number of DOCDB family members at filing (Panel A) or the
number of words in the 1st independent claim of the application (Panel B) as
outcome variable. For estimation we use only applications assigned to examiners
associated with at least 10 applications, and art-unit-filing-year groups with at least
50 applications and at least two examiners. The first set of models includes only the
examiner fixed effects as explanatory variables (“Examiner FEs”). In the second
set of models, we also include USPC subclass effects (“Examiner FEs, cotrolling for
subclass”). We exclude models in which some examiner fixed effects are collinear
with the subclass effects. Columns labeled “Rej.” report the share of F-tests that
reject the null hypothesis that all the examiner fixed effects are equal to zero at 1%
level. Columns labeled “N” report the number of tests.
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Table 5: Probability of Having the Same Examiner within USPC Subclasses

Outcome 1[Same Examiner]*100

Technology Center Regressors (1) (2)

Full sample

Same assignee 5.30 2.50
(0.37) (0.11)

Jaccard Similarity*100 0.96 2.56
(0.40) (0.16)

Art-unit-year-subclass FEs X

Biotechnology (1600)

Same assignee 2.27 1.35
(2.47) (1.29)

Jaccard Similarity*100 1.37 4.94
(0.64) (0.45)

Chemicals (1700)

Same assignee 12.60 3.88
(2.46) (0.47)

Jaccard Similarity*100 3.17 3.23
(0.37) (0.15)

Comp/Comm (2100)

Same assignee 3.01 2.74
(0.25) (0.21)

Jaccard Similarity*100 1.88 1.72
(0.09) (0.08)

Comp/Comm (2400)

Same assignee 4.82 4.52
(0.34) (0.30)

Jaccard Similarity*100 1.84 1.73
(0.10) (0.09)

Comp/Comm (2600)

Same assignee 3.08 2.39
(0.29) (0.21)

Jaccard Similarity*100 1.00 1.15
(0.14) (0.07)

Electrical (2800)

Same assignee 3.73 1.66
(0.41) (0.13)

Jaccard Similarity*100 0.45 1.25
(0.16) (0.08)

Miscellaneous (3600)

Same assignee 5.45 2.72
(0.48) (0.28)

Jaccard Similarity*100 1.79 1.67
(0.55) (0.30)

Mechanical (3700)

Same assignee 2.86 2.76
(0.52) (0.26)

Jaccard Similarity*100 3.47 2.77
(0.23) (0.14)

Unit of observation is a patent application pair. In all models, the outcome is an indicator
variable equal to one if applications in the pair have the same examiner, multiplied by 100 for
easier interpretation of the coefficients. The two main explanatory variables are the Jaccard
similarity between keywords of the applications in the pair (multiplied by 100 and standardized
within estimation subsample) and an indicator variable equal to 1 if the applications in the pair
have the same assignee. Column (2) also includes art-unit-filing-year-subclass fixed effects.
The sample includes application pairs from our agglomeration analysis sample (i) examined
by the same art unit, (ii) filed in the same year, (iii) classified in the same primary subclass,
(iv) whose number of keywords utilized for the computation of the Jaccard similarity is at
least 10 for both applications, and (v) with an assignee for both applications. We exclude
from the sample art-unit-filing-year-subclasses with just one pair. The full sample contains
about 11.7 million patent application pairs. All models estimated by OLS. Robust standard
errors in parenthesis, clustered at art-unit-filing-year level.
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Table 6: Examiner Specialization and Examination Outcomes.

Model Within Examiner Between Examiner

Outcome Granted Words Days Granted Words Days

(1) (2) (3) (4) (5) (6)

Shareijt 0.00*** 0.00 0.01*** -0.03*** 0.05*** 0.03***
(0.00) (0.00) (0.00) (0.00) (0.01) (0.01)

Application characteristics X X X X X X
Art-unit-year-examiner FEs X X X

Observations 1,746,664 1,069,219 1,746,444 48,950 43,490 48,950
Art-unit-year-examiners 48,950 43,490 48,950

All models estimated with OLS. Unit of observation is a patent application for the within regressions
and an art-unit-filing-year-examiner for the between regressions. Sample contains all applications in
our primary analysis sample belonging to an art-unit by examiner by filing-year cell containing more
than 10 applications. We also drop a small number of examiner-art-unit-filing-year groups that have
only one application in the estimation sample after excluding pending applications and those filed
after year 2009 to account for truncation. Outcome in column (1) is an indicator variable equal to
one for granted applications. Outcome in column (2) is the change in the number of words in the
first independent claim between the published application and the granted patent (standardized).
Outcome in column (3) is the difference in days between the date an application is docketed to an
examiner for the first time and its disposal date (standardized). See the main text for the definition of
Shareiijt. Also this variable is standardized. All models also include control variables for application
characteristics, including the natural logarithms of DOCDB family size at filing date and number of
independent claims in the published application, and indicator variables for applications filed by small
entities and applications whose first inventor has a US address. The mean of the outcome of the
regression in column (1) is 0.65. Between regressions in columns (4)-(6) estimated on the group means.
Standard errors clustered by art-unit-filing-year in parentheses. *** p<0.01, ** p<0.05, * p<0.10
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Appendix A: D-index and MTAD Statistics

Divergence Index

Suppose we have a set of applications characterized by category i ∈ I = {1, ..., I}, assigned

to a set of examiners denoted by r ∈ R = {1, ..., R}. In our application, the categories

i may correspond to USPC subclasses, assignees or any other predetermined observable

characteristic of a patent application. Under random allocation, examiner r’s share of all

applications from category i should equal her share of the overall population.

To formalize that idea, define nir as the number of applications in category i assigned

to examiner r, and Ni =
∑R

r=1 nir as the total number of applications in category i. The

reference distribution p0 = (p0r : r ∈ R), where p0r =
∑I

i=1 nir∑I
i=1 Ni

measures examiner r’s

share of all applications, is the share we expect her to be allocated from each category

under the null of random assignment.

Let pir denote the true probability that a randomly sampled application in category

i is assigned to examiner r, so the distribution across examiners for the category is pi =

(pir : r ∈ R). We can measure the divergence between pi and p0 using the relative entropy

of pi with respect to p0, called the D-index by Mori et al. (2005):

D(pi|p0) =
∑
r∈R

pir ln

(
pir
p0r

)
.

D(pi|p0) is nonnegative, achieves its minimum at pi = p0 and its local maxima when all

applications in category i are assigned to a single examiner.

To estimate the D-index, we use the observed data to estimate the probabilities pir,

with p̂ir = nir

Ni
, thus estimating:

D(p̂i|p0) =
∑
r∈R

p̂ir ln

(
p̂ir
p0r

)
.

These probability estimates converge to the true value exponentially fast with the increase

in sample size for a given category Ni.

As shown by Mori et al. (2005) the D-index can be related to the the log likelihood

ratio (λ):

− lnλ

Ni
=
∑
r∈R

nir
Ni

ln

(
p̂ir
p0r

)
= D(p̂i|p0).

Given that −2 lnλ is distributed asymptotically as a chi-square with R− 1 degrees of

freedom, we can use this relationship to test the null hypothesis that pi = p0. In practice,

we compute 2NiD(p̂i|p0) and use it for a chi-square test with R− 1 degrees of freedom.

Multinomial Test for Agglomeration and Dispersion
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To provide a brief formal description of MTAD, we adapt the notation provided in Rysman

& Greenstein (2005). Suppose we have R examiners, each receiving nr applications, with

r = 1, ..., R. The variable nr is bounded between n = 0 and n = ∞ and distributed

according to the discrete distribution f(nr). Each examiner can be assigned applications

of c types. The unconditional probability of being assigned type c is pc for c = 1, ..., C.

The observed number of applications of type c assigned to examiner r is xcr. Define xr as

the vector of elements x1
r, ..., x

C
r , p as the vector of probabilities p1, ..., pC , n as the R× 1

vector of applications assigned to each examiner, and X as the R×C matrix of allocations.

If examiners are assigned applications independently, the likelihood of observing outcome

xr for examiner r is the multinomial pdf

L(xr, nr,p) =

(
nr

x1
r, ..., x

C
r

)
p
x1
r

1 ... p
xC
r

C

and the average log-likelihood for the data is

l(X,n,p) =
1

R

R∑
r=1

ln

(
L(xr, nr,p)

)
.

We want to compare this log-likelihood with the value we would observe under inde-

pendent random assignment. Let the random variable l(f,p) be distributed according to

the distribution l(X,n,p) if X was actually drawn from a multinomial distribution and

nr was drawn from f . Then the expected log-likelihood under random allocation is given

by

E[l(f,p)] =
∑
nr

( ∑
z∈Φ(nr)

lnL(z, nr,p)× L(z, nr,p)

)
f(nr)

where Φ(nr) is the set of all possible allocations of the nr applications. To compute

E[l(f,p)] we treat p as known and take f to be the empirical distribution of nr. The

MTAD test-statistic is

t(X,n,p) = l(X,n,p)− E[l(f,p)]. (4)

A negative (positive) value of t(X,n,p) signals agglomeration (dispersion) of patent

applications compared to the null of random assignment. This statistic is distributed

asymptotically normal and we use simulation to generate its confidence intervals.
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Appendix B: Additional Tables and Figures

(Online Publication Only)

Figure B1: Distribution of P-values from D-index (Top) and MTAD (Bot-
tom) for USPC Subclass and Assignee (Lower Thresholds)
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MTAD - Assignee

Distribution of p-values of D-index and MTAD analysis for USPC subclass and Assignee

(cleaned and standardized). Tests on subsamples with more than 10 applications for

D-index and 25 applications for MTAD. Vertical red lines are standard thresholds for

statistical significance (0.01, 0.05 and 0.10)
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Table B1: Summary Statistics for Sample of Applications

Panel A: categorical variables

Variable # of categories Applications per category

Mean Std dev Min
5th

percentile
1st

quartile
Median

3rd

quartile
95th

percentile
Max

Examiners 12,338 220.22 227.54 1 2 48 156 313 714 1,655
Art units 590 4,605.14 3,942.42 3 446 2,007 3,228.50 6,157 13,459 21,905
Subclasses 119,448 22.75 106.65 1 1 2 5 14 85 13,836
Assignees 164,195 12.99 301.16 1 1 1 1 3 19 59,998

Panel B: quantitative variables

Variable N Mean Std dev Min
5th

percentile
1st

quartile
Median

3rd

quartile
95th

percentile
Max

DOCDB family size 2,716,195 2.88 5.66 1 1 1 2 3 8 378
Words in 1st claim 2,712,367 124.95 128.00 1 35 70 103 151 269 46,194

The number of applications characterized by a big DOCDB family and a low number of words in the first independent claim are respectively
106,408 and 116,665.

Table B2: Summary Statistics for Examiners’ Specialization and Examina-
tion Outcomes.

Variable N Mean Std dev Min Median Max

Shareijt 1,750,188 0.04 0.09 0.00 0.00 1.00
Granted 1,750,188 0.65 0.48 0.00 1.00 1.00
Days 1,749,967 918.09 510.19 0.00 826.00 17,835.00
Change in words 1,069,829 49.16 87.56 -10,351.00 30.00 9,248.00
DOCDB family at filing 1,750,165 2.80 3.86 1.00 2.00 323.00
Independent claims 1,746,787 3.11 3.00 1.00 3.00 620.00
Small entity 1,750,188 0.24 0.43 0.00 0.00 1.00
US fist inventor 1,750,067 0.31 0.46 0.00 0.00 1.00
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Table B3: D-index and MTAD Tests within Art-Unit-Filing-Year (Share Re-
jecting Random Allocation at 5% Significance Level, by Technology Center)

Panel A: USPC subclass
D-index MTAD

Technology Center Rej. N Agg. Disp. N
Biotechnology and Organic Chemistry 43.8 906 28.1 0.2 551
Chemical and Materials Engineering 66.3 814 64.6 0.0 721
Computer Architecture, Software, and Security 7.1 1,170 1.4 0.1 723
Computer Networking and Video Distribution 14.9 753 2.1 0.2 628
Communications 22.5 2,268 20.6 0.0 694
Semiconductors, Electrical and Optical Systems 46.5 3,389 47.1 0.1 843
Miscellaneous† 23.2 1,162 28.8 0.3 742
Mechanical Engineering, Manufacturing, Products 49.0 1,536 49.3 0.0 680

All tests 35.3 11,998 31.0 0.1 5,582

Panel B: Assignee
D-index MTAD

Technology Center Rej. N Agg. Disp. N
Biotechnology and Organic Chemistry 65.8 225 13.3 0.0 527
Chemical and Materials Engineering 56.0 866 40.3 0.0 699
Computer Architecture, Software, and Security 11.3 970 0.3 0.0 709
Computer Networking and Video Distribution 15.5 509 0.3 0.0 616
Communications 17.0 1,879 10.0 0.1 668
Semiconductors, Electrical and Optical Systems 31.4 3,360 22.6 0.1 824
Miscellaneous† 40.2 818 21.1 0.0 703
Mechanical Engineering, Manufacturing, Products 51.1 1,089 29.1 0.0 659

All tests 31.7 9,716 17.6 0.0 5,405

Panel C: Top Ventile of DOCDB Family Size
D-index MTAD

Technology Center Rej. N Agg. Disp. N
Biotechnology and Organic Chemistry 2.8 772 6.4 0.0 549
Chemical and Materials Engineering 6.9 1,018 9.4 0.0 716
Computer Architecture, Software, and Security 0.8 860 4.4 0.0 723
Computer Networking and Video Distribution 0.7 742 2.6 0.0 627
Communications 4.0 1,011 6.5 0.0 690
Semiconductors, Electrical and Optical Systems 7.6 1,427 10.5 0.0 841
Miscellaneous† 5.3 1,149 8.5 0.0 738
Mechanical Engineering, Manufacturing, Products 8.2 1,089 11.9 0.0 678

All tests 5.0 8,068 7.7 0.0 5,562

Panel D: Bottom Ventile of Words in 1st Claim
D-index MTAD

Technology Center Rej. N Agg. Disp. N
Chemical and Materials Engineering 7.2 1,129 9.7 0.0 721
Computer Architecture, Software, and Security 0.1 895 1.5 0.0 723
Computer Networking and Video Distribution 0.0 755 0.0 0.0 627
Communications 0.5 1,052 0.9 0.0 693
Semiconductors, Electrical and Optical Systems 5.0 1,524 8.8 0.1 843
Miscellaneous† 3.4 1,194 4.2 0.1 741
Mechanical Engineering, Manufacturing, Products 3.2 1,160 4.7 0.1 679

All tests 3.1 7,709 4.5 0.1 5,027

For D-index, columns labelled “Rej.” report the share of tests that reject the null hypothesis of equality between
the observed and the reference distribution at 5% level. For MTAD, columns labelled “Agg.” (“Disp.”) report
the share of tests that reject the null hypothesis of random allocation at 5% level in favor of agglomeration
(dispersion). All tests are conducted within art-unit-filing-year cells with more than 20 applications for the D-

index and more than 50 applications for MTAD. † Miscellaneous = “Transportation, Construction, Electronic
Commerce, Agriculture, National Security and License & Review.”
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Table B4: Mean Jaccard Similarity by GS-level.

(1) (2)
GS-level Mean Jaccard Mean Jaccard, same subclass
GS-5 4.54 7.90
GS-7 4.50 8.15
GS-9 4.54 7.91
GS-11 4.55 8.08
GS-12 4.63 8.44
GS-13 4.60 8.52
GS-14 4.68 10.18
GS-15 4.70 11.20

For this table, we match the data utilized in Table 4 with data on
the GS-level of examiners in years between 2000 and 2012 (inclusive)
utilized by Frakes & Wasserman (2017). We focus on application-pairs
with the same filing year examined by the same examiner. Column
(1) reports the mean Jaccard similarity for the pairs examined by ex-
aminers at different GS-levels (43,252,367 pairs). Column (2) reports
the mean Jaccard similarity for the pairs that have the same subclass
examined by examiners at different GS-levels (1,408,830 pairs). Ex-
aminers at GS-14 level are “primary” examiners. Examiners at GS-15
level are SPEs.
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Table B5: IV “First-Stage” With and Without USPC Subclass Effects

Outcome† 1[Granted]*100 log(Words-in-1st-claim)

Potential Instrument
Leave-one-out

grant rate
*100

Leave-one-out
scope change

(1) (2) (1)/(2) (3) (4) (3)/(4)
Full Sample 0.75 0.68 0.90 0.37 0.35 0.94

(0.00) (0.00) (0.01) (0.01)

Art-unit-year FEs X X

Art-unit-year-subclass FEs X X

Biotechnology (1600) 0.69 0.61 0.89
(0.01) (0.01)

Chemicals (1700) 0.80 0.66 0.83 0.31 0.18 0.57
(0.01) (0.01) (0.02) (0.02)

Comp/Comm (2100) 0.66 0.64 0.98 0.32 0.32 1.00
(0.01) (0.01) (0.01) (0.01)

Comp/Comm (2400) 0.56 0.53 0.95 0.35 0.34 0.98
(0.01) (0.02) (0.01) (0.02)

Comp/Comm (2600) 0.75 0.72 0.96 0.38 0.36 0.95
(0.01) (0.01) (0.01) (0.01)

Electrical (2800) 0.79 0.74 0.94 0.44 0.43 0.96
(0.01) (0.01) (0.01) (0.01)

Miscellaneous (3600) 0.74 0.63 0.85 0.34 0.30 0.88
(0.01) (0.01) (0.01) (0.01)

Mechanical (3700) 0.79 0.69 0.88 0.34 0.30 0.88
(0.01) (0.01) (0.01) (0.01)

†Outcome is the endogenous variable in an instrumental variable regression: an indicator variable equal to
one if an application is granted multiplied by 100 for easier interpretation of the coefficients in models (1)
and (2), and the natural logarithm of the number of words in the first independent claim of a granted patent
in models (3) and (4). Coefficients and standard errors for this second set of models are multiplied by 100
for easier interpretation of the results. Sample contains all applications in our primary sample that were
either granted or abandoned by the end of the sample period; whose leave-one-out potential instrumental
variable is computed with more than 10 applications; and whose art-unit-filing-year-subclass cell in the
estimation sample contains at least two applications. The estimates for the patent scope models use only
granted applications. Models in columns (1) and (3) include art-unit-filing-year fixed effects, while models
in columns (2) and (4) include art-unit-filing-year-subclass fixed effects. Each “first-stage” estimate in this
table comes from a separate OLS regression of Outcome on Potential Instrument for applications assigned
to a given TC. Robust standard errors, clustered by art-unit-filing-year, in parentheses. All estimates are
statistically significant at the 1% level. We exclude Biotechnology patents (TC 1600) from the second set
of estimates because Kuhn & Thompson (2017) suggest that counting words in the first claim does not
yield a meaningful measure of claim-scope for those applications. To test whether differences between the
estimates in columns (1) and (2) and those in columns (3) and (4) are statistically significant, we demean
the leave-one-out variables within art-unit-filing-year and within art-unit-filing-year-subclass, re-run the
models (without the fixed effects, as demeaning within groups at the level of the fixed effects produces
the same coefficients) and test the statistical significance of the differences in the coefficients. All tests
but those for the patent scope models in TCs 2100 and 2400 are statistically significant at 1% level. We
also run a battery of likelihood ratio tests to compare models analogous to those in columns (1)-(2) and
(3)-(4) without clustering the standard errors. All likelihood ratio tests are statistically significant at the
1% level.
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